197_PartsMost of the systems are powered by AC mains. Uninterrupted power supply systems (UPSes) are there as a back-up to power the systems when mains supply is interrupted due to a power cut. A UPS differs from a standby generator in that it will provide near-instantaneous power by supplying the energy stored in batteries. In an online UPS, batteries are always connected to the inverter, which is always on, so that no transfer switches are necessary when power disruption occurs.

In an offline UPS, the inverter circuit is switched on when mains are not there. UPSes are available off-the-shelf, and one can select the system as per one’s requirement, back-up time being one requirement. However, one can construct a UPS of one’s own choice. Here is a circuit of an offline UPS, which a hobbyist can make at a reasonable cost. The capacity of the UPS is 350VA, so it can be used for any equipment with a load below 350VA. The UPS can be upgraded to 1kVA by making just a few changes.

Circuit and working
The circuit diagram of the mini offline UPS shown in Fig. 1 has the following four sections:
Section 1: Mains/inverter change-over section
Section 2: Inverter section
Section 3: Battery-status-indicator section
Section 4: Oscillator section

Explore Circuits and Projects Explore Videos and Tutorials

Z4D_TestAbove-mentioned sections and their interconnections are appropriately marked in the circuit diagram.

Mains/inverter changeover section. The circuit of this section is built around step-down transformer X1 (230V AC primary to 12V-0-12V, 500mA secondary), a 12V DC, 3C/O (changeover) relay (RL1) and a few other components. 230V AC mains is connected to the circuit through connector CON7. Output of the UPS is available at connector CON8, which is actually a 3-pin socket.

READ
Electronics Projects: Top Five DIY Projects

Mains voltage is rectified by diodes D1-D2 (1N4007). The full-wave rectified output is smoothened by capacitor C1. DC voltage so generated is applied at pins 10 and 11 of relay RL1. When mains voltage is there, the relay gets energised to affect the changeover to connect the mains to the output of the UPS.

The circuit is not on a PCB and has been wired externally. Relay contacts in the circuit diagram are shown in a de-energised state of the relay.

Inverter section. This section comprises transformer X2, npn power transistors 2N3055 (T1 through T8) and power diodes 1N5407 (D3-D4). Transistors, which are eight in number, are connected in two banks. The number of transistors per bank will depend on the required VA rating. The prototype has been made for 350VA rating by using four transistors per bank. The number of transistors required per bank for different capacities are:

550VA – Five
650VA – Six
1000VA – Seven

1E4_Fig_1
Circuit Diagram of Mini Offline UPS

This circuit is also not on a PCB and has been wired externally. Transistors T1 through T8 have been fitted on the same heat-sink. Mounting of transistors has to be done in such a manner that their base and emitter are not in contact with the heat-sink. The metal body of the transistor is the collector. Collectors should be separated from the heat-sink. This is done by using mica separators between the heat-sink and metal body of the transistor. In short, all three terminals should be separated from the heat-sink. The arrangement is shown in Fig. 2.

READ
40-METRE DIRECT CONVERSATION RECEIVER

Interconnections of transistor terminals, transformer X2, diodes D3-D4, battery-status-indicator section and oscillator section are shown in a combined circuit diagram (Fig. 1). The heat-sink should also be isolated from the UPS box.

5D2_Fig_2

Fig. 3: Details of the 3C/O relay
Fig. 3: Details of the 3C/O relay
Fig. 4: PCB of the oscillator and the battery-status section
Fig. 4: PCB of the oscillator and the battery-status section
Fig. 5: Components of the PCB
Fig. 5: Components of the PCB

Download PCB and component Layout PDFs: Click here

Battery-status-indicator section. This section monitors the state of the battery. It is connected to the battery by CON3-CON4 combination. Connect these as per polarity of the 12V battery. Overcharge status of 14.4V is set with the help of preset VR3. Overcharge status is indicated by LED2.

LEAVE A REPLY