High internal analysis bandwidth allows development of latest radar and wireless communications technologies
Rohde & Schwarz has launched the new R&S FSW-B8001 that extends the internal analysis bandwidth of the R&S FSW high-end signal and spectrum analyzer to 8.3 GHz. Covering an input frequency range of up to 90 GHz, the instrument provides an unmatched dynamic range and sensitivity, precision and EVM performance.Â
The extended analysis bandwidth option and dedicated measurement applications, the signal and spectrum analyzer meet current and future test and measurement requirements for ultra-wideband signal analysis. Applications of the R&S FSW include:
- pulse measurements of A&D radar systems
- satellite payload testingÂ
- amplifier pre-distortion tests.Â
The instrument also covers chirp analysis for automotive radar and research on the next generation of wireless communication.
Detailed Frequency Analyzing
Nearly all high-frequency applications require higher signal bandwidth. For example, in radar technology, wider bandwidths lead to better range resolution for object detection. When developing and verifying both radar systems and radar jammer systems, the wideband acquisition makes it possible to analyze frequency hops in detail while examining different radar systems operating at different frequencies.Â
Increased bandwidths are also needed in wireless communications technology, with every new technology generation requiring ever-higher data throughput. For instance, the IEEE 802.11ay standard for Wi-Fi supports channel bonding, which leads to signals with bandwidths greater than 8 GHz. Suitable wideband T&M equipment is also needed for upcoming gigabit communications sub-THz bands, such as D-Band and-Band (often regarded as potential frequency ranges for a future 6G wireless communication standard).
Expected High Signal Operation
Future satellite systems will also operate with higher frequencies and wider bandwidths as bandwidths are expected to increase to 3 GHz or 5 GHz at frequencies up to 90 GHz, example, for high throughput satellites designed for supporting terabit connectivity. Previous steps for ultra-wideband signal analysis made use of signal and spectrum analyzers as wideband downconverters. The downconverted signals were fed into an oscilloscope, digitized and fed back to the analyzer. The new solution with the R&S FSW, however, offers far higher signal quality and sensitivity in a user-friendly, one-box solution – combined with fully featured and signal analysis capabilities that also offer spectrum analysis functionalities.
The new R&S FSW-B8001 internal analysis bandwidth option is now available from Rohde & Schwarz.Â